We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Theta series, infinite rank Hermitian vector bundles, Diophantine algebraization (Part 1)

Formale Metadaten

Titel
Theta series, infinite rank Hermitian vector bundles, Diophantine algebraization (Part 1)
Serientitel
Anzahl der Teile
43
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
In the classical analogy between number fields and function fields, an Euclidean lattice (E,∥.∥) may be seen as the counterpart of a vector bundle V on a smooth projective curve C over some field k. Then the arithmetic counterpart of the dimension h0(C,V)=dimkΓ(C,V) of the space of sections of V is the non-negative real number h0θ(E,∥.∥):=log∑v∈Ee−π∥v∥2. In these lectures, I will firstly discuss diverse properties of the invariant h0θ and of its extensions to certain infinite dimensional generalizations of Euclidean lattices. Then I will present applications of this formalism to transcendence theory and to algebraization theorems in Diophantine geometry.