We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Introduction to working with spatial data in Python

Formale Metadaten

Titel
Introduction to working with spatial data in Python
Serientitel
Anzahl der Teile
17
Autor
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache
Produzent
ProduktionsortWageningen

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Python is an extremely popular general-purpose programming language. It is used in a wide range of settings and for various purposes, including for spatial data processing and analysis. The aim of this tutorial is to give an introduction to methods of working with spatial data using Python. The tutorial was split into two parts, introducing two central Python packages: geopandas---For working with vector layers rasterio---For working with rasters The tutorial demonstrated typical basic workflows of processing spatial data: data input, processing, geo-computation, and exporting of the results. We used realistic datasets, such as GTFS public transport data and remote sensing products. By the end of the tutorial, the participants were able to: Import spatial data from files Subset and process the data Graphically display the data Perform spatial calculations (such as calculating distances, or applying raster algebra operators) Export the results To follow along and reproduce the results on your own computer, the prerequisite is to be able to run Python code in a Jupyter Notebook interface, linked to a Python environment with the two above-mentioned packages installed. Instructions were sent in advance.