We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Images of compatible systems of Galois representations of global function fields

Formale Metadaten

Titel
Images of compatible systems of Galois representations of global function fields
Alternativer Titel
Compatible systems of Galois representations of global function fields
Serientitel
Anzahl der Teile
17
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Let K be a finitely generated infinite field over the finite prime field Fp with separable closure Ks and let X be a smooth projective variety over K. By Deligne the cohomology groups Hie´t(XKs,Qℓ) for varying primes ℓ≠p form a (Q-rational) compatible system of Galois representations of Gal(Ks/K) and its restriction to the geometric Galois group GgeoK=Gal(Ks/KFsp) is semisimple. Using mainly algebraic geometry, representation theory and Bruhat-Tits theory, Cadoret, Hui and Tamagawa showed recently that also the family of reductions Hie´t(XKs,Fℓ) is semisimple as a representation of GgeoK for almost all ℓ, the key case being that of a global function field K. This has important consequence for the image of GgeoK for its action on the adelic module~Hie´t(XKs,AQ). In joint work with W. Gajda and S. Petersen, using automorphic methods as a main tool, we prove the analog of the above result for any E-rational compatible system of Galois representations of a global function field. In the talk I shall explain the context, indicate the applications and sketch how automorphic methods come to bear on the problem.
Schlagwörter