We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

High-throughput band-structure calculations and machine learning for spin models of quantum magnets

Formale Metadaten

Titel
High-throughput band-structure calculations and machine learning for spin models of quantum magnets
Serientitel
Anzahl der Teile
23
Autor
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Quantum magnets are materials with localized magnetic moments that can host unconventional behaviors. The case in point are undoped cuprates, an abundant class of magnetic insulators with particularly rich chemistry. Understanding their diverse magnetic behaviors is impossible with the knowledge of the underlying spin model. Band-structure calculations combined with spin-model simulations offer an accurate tool to unravel spin models of cuprates. Yet, such numerical studies are limited to a handful of materials or even to a single material. Here, I will report on our progress in performing respective calculations in a high-throughput fashion and discuss whether (and how) machine learning can be employed to alleviate numerical bottlenecks.