We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Local weak convergence, Zeta limits and random topology

Formale Metadaten

Titel
Local weak convergence, Zeta limits and random topology
Serientitel
Anzahl der Teile
18
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Local weak convergence is a powerful framework for study of sparse graph limits and has been successfully applied in obtaining exact expectation asymptotics in probabilistic combinatorial optimization​, statistical physics and random graph theory. In particular, it can be used to show that sum of lifetime sum of $H_0$-persistent diagram on a mean field model (complete graph with i.i.d. weights) converges to $\zeta(3)$, where $\zeta$ is the Riemann-zeta function. Further, using this framework the minimum cost function on the complete bipartite graph with i.i.d. weights was shown to converge to $\zeta(2)$. In this talk, we shall look at some underlying ideas behind such results and wonder about the possibility of extensions to random topology. As is to be expected, when we move from random graphs to random complexes, there will be fewer answers and more questions.