We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Solitary waves for the Whitham equation on the whole line

Formale Metadaten

Titel
Solitary waves for the Whitham equation on the whole line
Serientitel
Anzahl der Teile
27
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We consider the Whitham equation on the whole line. Due to the smoothing nature of the linear operator, the question for existence of traveling wave solutions has been open till recently. In 2012, Ehrnstroem-Groves-Wahlen (EGW) have constructed such waves, but only for values of c slightly bigger than one, even though the admissible range of wave speeds is c∈(1,2). The approach in EGW consists of a tour de force calculus of variations, supplemented by a bifurcation argument from the small KdV waves. Note that the EGW waves are of small amplitude. In this work (joint with M. Ehrnstroem), we construct a one parameter family of such waves, with wave speeds c∈(1,c0) for some limiting value c0, not necessarily close to 1. We conjecture that the wave with speed c0 is the maximal amplitude wave (i.e. the highest wave, with amplitude c/2) and there are no waves with wave speeds c∈(c0,2). However, we still find some interesting objects in the interval (c0,2). The argument uses calculus of variation construction, very different than the one employed by EGW. It is based on constraints on appropriately selected Orlicz spaces. Finally, all our traveling waves are shown to be bell-shaped, confirming the available numerical evidence. I will also speculate a bit about their stability as they are constructed as ground states of the appropriate constrained maximization problems.