We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

One-dimensional M5-model for mesenchymal migration

00:00

Formale Metadaten

Titel
One-dimensional M5-model for mesenchymal migration
Alternativer Titel
Exploring the spectral stability of standing and traveling waves in mesenchymal migration
Serientitel
Anzahl der Teile
27
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Mesenchymal migration is a proteolytic and path generating strategy of individual cell motion inside the network of collagen fibres that compose the extracellular matrix of tissues. We analyze the spectral stability of the families of standing and traveling wave solutions of the one-dimensional version of the $M^5$-model, which was proposed by T. Hillen to describe mesenchymal cell movement. Regarding the standing waves, they are spectrally stable and the spectrum of the linearized operator around the waves consists solely of essential spectrum. To prove that in the standing case the point spectrum is empty we use energy estimates together with the integrated-variable technique of Goodman. The panorama is completely different in the traveling case; the wave profiles are spectrally unstable due to the fact that the essential spectrum reaches the closed right-half complex plane. In our pursuit of spectral stability, we have constructed a weighted Sobolev space where the essential spectrum lies inside the open left-half complex plane.