We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

The Galois Invariant Locus in the Berkovich Projective Line

Formale Metadaten

Titel
The Galois Invariant Locus in the Berkovich Projective Line
Serientitel
Anzahl der Teile
11
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
This talk concerns joint work with Xander Faber. Let K be a nonarchimedean local field of characteristic 0 and residue characteristic p>0. Let q=pf be the order of its residue field, and let CK be the completion of an algebraic closure of K. The group of continuous automorphisms Galc(CK/K) acts on the Berkovich Projective Line P1CK. We show that the Galois invariant locus in P1CK is a densely branched tree which properly contains the path-closure of P1(K), and is contained in a tube of path-distance radius 1/(p−1)∗[1+1/(p−1)] around the path-closure. The radius can probably be improved to 1/(p−1). The Galois invariant locus has q+1 branches at each type II point in the locus corresponding to a disc D(a,pb), with b rational, and no other branches. We construct a conjecturally dense subset of the Galois invariant locus. We also establish a conjecture of Benedetto, that each Galois invariant point is defined over a totally ramified extension of K.