We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Unlikely Intersections on families of abelian varieties (Part I)

Formale Metadaten

Titel
Unlikely Intersections on families of abelian varieties (Part I)
Serientitel
Anzahl der Teile
11
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Let A be a non-isotrivial family of abelian varieties over a smooth irreducible curve S. Suppose the generic fiber of A is simple and call R its endomorphism ring. We consider an irreducible curve C in the n-fold fibered power of A and suppose that everything is defined over a number field k. Then C defines n points P1,...Pn points on A(k(C)). Then, there are at most finitely many points c on the curve such that the specialized P1(c),...Pn(c) are dependent over R, unless they were already identically dependent. This, combined with earlier works of the authors and of Habegger and Pila, gives a general unlikely intersections statement for (not necessarily simple) families of abelian varieties. The proof of these theorems uses a method introduced by Pila and Zannier and combines results coming from o-minimality with some Diophantine ingredients. These results have applications to the study of the solvability of some Diophantine equations in polynomials.