We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Diagonals, congruences, and algebraic independence

00:00

Formale Metadaten

Titel
Diagonals, congruences, and algebraic independence
Serientitel
Anzahl der Teile
23
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
A very rich interplay between arithmetic, geometry, transcendence and combinatorics arises in the study of homogeneous linear differential equations and especially of those that “come from geometry” and the related study of Siegel G-functions. A remarkable result is that, by adding variables, we can see many transcendental G-functions (and thus many generating series) as arising in a natural way from much more elementary function, namely rational functions. This process, called diagonalization, can be thought of as a formal integration. I will discuss some properties enjoy by diagonals of rational functions and connect them with Lucas'congruences for binomial coefficients and algebraic independence of power series. This corresponds to some joint works with Jason Bell and Eric Delaygue.
Schlagwörter