We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Fitting a Stochastic Model to Eye Movement Time Series in a Categorization Task

Formale Metadaten

Titel
Fitting a Stochastic Model to Eye Movement Time Series in a Categorization Task
Serientitel
Anzahl der Teile
21
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Our goal is to develop an efficient framework for fitting stochastic continuous-time models to experimental data in cognitive psychology. As a simple test problem, we consider data from an eye-tracking study of attention in learning. For each subject, the data for each trial consists of the sequence of stimulus features that the subject fixates on, together with the duration of each fixation. We fit a stochastic differential equation model to this data, using the Approximate Bayesian Computation framework. For an individual subject we infer posterior distributions for the unknown parameters in the model.