We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Random domain decomposition for kriging non stationary object data

Formale Metadaten

Titel
Random domain decomposition for kriging non stationary object data
Serientitel
Anzahl der Teile
21
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The analysis of complex data distributed over large or highly textured regions poses new challenges for spatial statistics. Available methods usually rely on global assumptions about the stationarity of the field generating the data and are unsuitable for large, textured or convoluted spatial domains, with holes or barriers. We here propose a novel approach for spatial prediction which cope with the data and the domain complexities through iterative random domain decompositions. The method is general and apt to the analysis of different types object data. A case study on the analysis and spatial prediction of density data relevant to the study of dissolved oxygen depletion in the Chesapeake Bay (US) will illustrate the potential of the novel approach. This is a joint work with Alessandra Menafoglio and Giorgia Gaetani, at MOX-Department of Mathematics, Politecnico di Milano.