We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

τ-invariants for knots in rational homology spheres

Formale Metadaten

Titel
τ-invariants for knots in rational homology spheres
Serientitel
Anzahl der Teile
12
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Using the knot filtration on the Heegaard Floer chain complex, Ozsváth and Szabó defined an invariant of knots in the three sphere called τ(K), which they also showed is a lower bound for the 4-ball genus. Generalizing their construction, I will show that for a (not necessarily null-homologous) knot, K, in a rational homology sphere, Y, we obtain a collection of τ-invariants, one for each spin-c structure. In addition, these invariants can be used to obtain a lower bound on the genus of a surface with boundary K properly embedded in a negative definite 4-manifold with boundary Y.