We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Geography of symplectic fillings in dimension 4

Formale Metadaten

Titel
Geography of symplectic fillings in dimension 4
Serientitel
Anzahl der Teile
12
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We introduce the Kodaira dimension of contact 3-manifolds and show that contact 3-manifolds with distinct Kodaria dimensions behave differently when it comes to the geography of various kinds of fillings. We also prove that, given any contact 3-manifold, there is a lower bound of $2\ chi+ 3\ sigma $ for all its minimal symplectic fillings. This generalizes the similar bound of Stipsicz for Stein fillings. This talk is based on joint works with Cheuk Yu Mak, and partly with Koichi Yasui.