We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Pentagonal geometries with connected deficiency graph

Formale Metadaten

Titel
Pentagonal geometries with connected deficiency graph
Serientitel
Anzahl der Teile
12
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Generalized polygons are Bruhat-Tits buildings of rank two. They can also be defined in terms of their bipartite incidence graph, which has the property that the girth is twice the diameter. By the Feit-Higman Theorem (1964), the only finite generalized polygons are thin (two points on each line or two lines on each point) or the diameter is 3, 4, 6 or 8, corresponding to the finite projective planes, the generalized quadrangles, the generalized hexagons and the generalized octagons, respectively. In particular there are no generalized pentagons. An alternative way to generalize the pentagon was introduced by Simeon Ball et al. in [1]. In this talk I will discuss what we know about these incidence geometries. [1] S. Ball, J. Bamberg, A. Devillers and K. Stokes. An alternative way to generalize the pentagon. J. Combin. Des., 21:163â 179, 2013. [2] T. S. Griggs and K. Stokes. On pentagonal geometries with block size 3, 4 or 5. Springer Proc. in Math. & Stat., 159:147â 157, 2016.