We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Numerical scheme for the solution of the Dirac equation on classical and quantum computers

Formale Metadaten

Titel
Numerical scheme for the solution of the Dirac equation on classical and quantum computers
Serientitel
Anzahl der Teile
21
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
A numerical scheme that solves the time-dependent Dirac equation is presented in which the time evolution is performed by an operator-splitting decomposition technique combined with the method ofcharacteristics. On a classical computer, this numerical method has some nice features: it is very versatile and most notably, it can be parallellized efficiently. This makes for an interesting numerical tool for the simulation of quantum relativistic dynamical phenomena such as the electron dynamics in very high intensity lasers. Moreover, this numerical scheme can be implemented on a digital quantum computer due to its simple structure: the operator splitting is a sequence of streaming operators followed by rotations in spinor space. This structure is actually reminiscent of quantum walks, which can be implemented efficiently on quantum computers. We determine the resource requirements of the resulting quantum algorithm and show that under some conditions, it has an exponential speedup over the classical algorithm. Finally, an explicit decomposition of this algorithm into elementary gates from a universal set is carried out using the software Quipper. It is shown that a proof-of-principle calculation may be possible with actual quantum technologies.