We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

A Novel Method for Determining the Rank of a Matrix

Formale Metadaten

Titel
A Novel Method for Determining the Rank of a Matrix
Serientitel
Anzahl der Teile
14
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
An $n$-by-$m$ Cauchon diagram $C$ is an $n$-by-$m$ grid consisting of $n∙m$ squares colored black and white, where each black square has the property that every square to its left (in the same row) or every square above it (in the same column) is black. Let $A=(a_{ij})$ be an $n$-by-$m$ matrix and $C$ an $n$-by-$m$ Cauchon diagram. Then we say that $A$ is a Cauchon matrix associated with the Cauchon diagram $C$ if for all $(i,j) \in \{1,…,n\} \times \{1,…,m\}$, we have $a_{ij}=0$ if and only if the corresponding square $(i,j)$ in $C$ is black. In this talk, we present a novel method for the determination of the rank of a matrix A and for checking a set of its consecutive row (or column) vectors for linear independence provided that the resulting matrix $\tilde{A}$ of the application of the condensed form of the Cauchon algorithm, see e.g., [2], is a Cauchon matrix. This method is also linked to the elementary bidiagonal factorization of a matrix under certain conditions [1]. This is joint work with Khawla Al Muhtaseb and Ayed Abdel Ghani (Palestine Polytechnic University, Hebron, Palestine), Shaun M. Fallat (University of Regina, Regina, Canada), and Juergen Garloff (University of Applied Sciences / HTWG Konstanz, and University of Konstanz, Konstanz, Germany). References: [1] M. Adm, K. Al Muhtaseb, A. Abedel Ghani, S. Fallat, and J. Garloff, A novel method for determining the rank of a matrix with application to bidiagonal factorization, submitted. [2] M. Adm and J. Garloff, Improved tests and characterizations of totally nonnegative matrices, Electron. J. Linear Algebra, 27, 588-610, 2014.