We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Optimal design when outcome values may be missing

Formale Metadaten

Titel
Optimal design when outcome values may be missing
Serientitel
Anzahl der Teile
21
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The presence of missing response values complicates statistical analyses. However, incomplete data are particularly problematic when constructing optimal designs, as it is not known at the design stage which values will be missing. When data are missing at random (MAR) it is possible to incorporate this information into the optimality criterion that is used to find designs. However, when data are not missing at random (NMAR) such a framework can lead to inefficient designs. We first investigate an issue common to all missing data mechanisms: The covariance matrix of the estimators does not exist, so it is not clear how well the inverse of the information matrix will approximate the observed covariance matrix. To this end, we propose and study a new approximation to the observed covariance matrix for situations where the missing data mechanisms is MAR. We then address the specific challenges that NMAR values present when finding optimal designs for linear regression models. We show that the optimality criteria will depend on model parameters that traditionally do not affect the design, such as regression coefficients and the residual variance. We also develop a framework that improves efficiency of designs over those found assuming values are MAR.