We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Optimal designs for longitudinal studies with fractional polynomial models

Formale Metadaten

Titel
Optimal designs for longitudinal studies with fractional polynomial models
Serientitel
Anzahl der Teile
21
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Fractional polynomials (FP) have been shown to be much more flexible than polynomials for fitting continuous outcomes in the biological and health sciences. Despite their increasing popularity, design issues for FP models have never been addressed. D- and I-optimal experimental designs will be computed for prediction using FP models. Their properties will be evaluated and a catalogue of design points useful for FP models will be provided. As applications, we consider linear mixed effects models for longitudinal studies. To provide greater flexibility in modeling the shape of the response, we use fractional polynomials and not polynomials to approximate the mean response. An example using gene expression data will be considered comparing the designs used in practice. An additional an interesting problem is finding designs for effective model discrimination for FP models. This will be explored from the KL-optimality point of view.