We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Covariate data for SDM (introduction)

Formale Metadaten

Titel
Covariate data for SDM (introduction)
Serientitel
Anzahl der Teile
15
Autor
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache
Produzent
Produktionsjahr2023
ProduktionsortWageningen

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
As a PhD candidate and research within OpenGeoHub Foundation, Carmelo focuses on data science projects such as GeoHarmonizer and the MOOD H2020 project. During the 2023 MOOD Summer School, he gave a session on covariates data for SDM. The goal of this lecture was to learn how to select and explore the variables to include in predictive models. By the end of the lecture, the students learned how to search for additional datasets in literature and open repositories, how to select the proper variables based on the topic of their research and how to conduct exploratory analysis of messy datasets. They finally learned how to prepare a dataset ready for modeling by including information coming from their response variable (treated in the previous lecture) and the predictive variables. Please find the link to the material here https://drive.google.com/drive/folders/1Ec7pjdyY_FBqt3B0aY49qthiLunMoTAx?usp=sharing.
Schlagwörter