We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Ensemble Machine Learning with R

Formale Metadaten

Titel
Ensemble Machine Learning with R
Serientitel
Anzahl der Teile
15
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache
Produzent
Produktionsjahr2023
ProduktionsortWageningen

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Tom Hengl is the co-founder of OpenGeoHub Foundation, the Netherlands, and leader of the Work Package “Dissemination, project sustainability, and impact assessment” of the MOOD project. As a PhD candidate and research within OpenGeoHub Foundation, Carmelo focuses on data science projects such as GeoHarmonizer and the MOOD H2020 project. During the 2023 MOOD Summer School, these two experts gave a lecture where the students learned how to combine all the tools that were introduced in the previous lectures: point data, predictor variables, different modeling and validation techniques. The algorithms explored in the previous lectures are here combined to produce results that are in general more robust than when using a single algorithm only.
Schlagwörter