We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Resolution of Liouville CFT : Segal axioms and bootstrap

Formale Metadaten

Titel
Resolution of Liouville CFT : Segal axioms and bootstrap
Serientitel
Anzahl der Teile
14
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 2.0 Generic:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Liouville CFT is a conformal field theory developped in the early 80s in physics, it describes random surfaces and more precisely random Riemannian metrics on surfaces. We will explain, using the Gaussian multiplicative chaos, how to associate to each surface with boundary an amplitude, which is an function on the space of fields on the boundary of (i.e. the Sobolev space equipped with a Gaussian measure, if the boundary of has connected components), and then how these amplitudes compose under gluing of surfaces along their boundary (the so-called Segal axioms). This allows us to give formulas for all partition and correlation functions of the Liouville CFT in terms of point correlation functions on the Riemann sphere (DOZZ formula) and the conformal blocks, which are holomorphic functions of the moduli of the space of Riemann surfaces with marked points. This gives a link between the probabilistic approach and the representation theory approach for CFTs, and a mathematical construction and resolution of an important non-rational conformal field theory. This is joint work with A. Kupiainen, R. Rhodes and V. Vargas.
Schlagwörter