We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Spatio-temporal modeling of the risk of tick infestation in GB using EHRs

Formale Metadaten

Titel
Spatio-temporal modeling of the risk of tick infestation in GB using EHRs
Serientitel
Anzahl der Teile
15
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache
Produzent
Produktionsjahr2023
ProduktionsortWageningen

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Tom Hengl is the co-founder of OpenGeoHub Foundation, the Netherlands, and leader of the Work Package “Dissemination, project sustainability, and impact assessment” of the MOOD project. As a PhD candidate and research within OpenGeoHub Foundation, Carmelo focuses on data science projects such as GeoHarmonizer and the MOOD H2020 project. In this lecture of the 2023 MOOD Summer School, Tom and Carmelo showed how to do space-time machine learning using ensemble of machine learning methods. He used an example of the SAVSNET (Small Animal Veterinary Surveillance Network) dataset containing over seven million spatial point records, among which 0.16% with tick attachment. He and his team overlayed these points with over seventy covariates to produce space-time monthly and long term predictions for the period between 2014 and 2021.
Schlagwörter