We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Digital olfaction

Formale Metadaten

Titel
Digital olfaction
Serientitel
Anzahl der Teile
33
Autor
Lizenz
CC-Namensnennung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache
Produzent
Produktionsjahr2023
ProduktionsortFrankfurt am Main

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Olfaction is an ancient sensory system that allows us to access sophisticated information about our environment. Drawing inspiration from biology, carbon nanomaterials-based gas sensors combined with machine learning algorithms aim at replicating this performance and digitizing the sense of smell. This lecture is about gas discrimination and identification performance of carbon nanomaterials-based nanosensors. Functionalized carbon nanomaterials-based nanosensors were fabricated on multiple-channel gas sensor devices, and the sensing signal was acquired when exposed to various gases. The transient features of the gases were then extracted from the sensing signal and fed to a machine-learning algorithm to discriminate and identify the gases. The developed carbon nanomaterials-based electronic olfaction system shows excellent gas identification performance for different gases. This platform can be used to miniaturize e-noses, digitize odors, and distinguish various gases and volatile organic compounds (VOCs) for applications such as pathogen detection, environmental monitoring, and disease diagnosis.
Schlagwörter