We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Wavelet theory, coorbit spaces and ramifications

Formale Metadaten

Titel
Wavelet theory, coorbit spaces and ramifications
Serientitel
Anzahl der Teile
18
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 2.0 Generic:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Coorbit theory was developed in the late eighties as a unifying principle covering (possible non-)orthogonal frame expansions in the wavelet and in the time-frequency context. Very much in the spirit of « coherent frames » or also reproducing kernels for a Moebius invariant Banach space of analytic functions one can describe a family of function spaces associated with a given integrable and irreducible group representation on a Hilbert space by its generalized wavelet transform, and obtain (among others) atomic decomposition results for the resulting spaces. The theory was flexible enough to cover also more recent examples, such as voice transforms related to the Blaschke group or the spaces (and frames) related to the shearlet transform. As time permits I will talk also on the role of Banach frames and the usefulness of Banach Gelfand triples, especially the one based on the Segal algebra , which happens to be a modulation space, in fact the minimal among all time-frequency invariant non-trivial function spaces.
Schlagwörter