We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Running Machine Learning in Production - a Journey to Success

Formale Metadaten

Titel
Running Machine Learning in Production - a Journey to Success
Serientitel
Anzahl der Teile
9
Autor
Mitwirkende
Lizenz
CC-Namensnennung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
"Have you ever deployed a machine learning project to production with the same principles as a software project? I did - I failed. But, on the way, I learned many essential factors to run ML in production environments successfully! So there is more to it than just deploying a data scientist Jupyter notebook to AWS. This talk will go through some common pitfalls of running machine learning in production settings. We will start with the requirements and work through the data acquisition and model-building phase. We explore beyond the current MLOps hype and try to understand what it takes to run a successful project that is ready to ripe like a fine wine rather than old milk." 00:00 Intro 00:05 Talk 32:00 Q&A About the speaker: Martin works as the vice-dean of studies for the post-diploma degree in “Machine Learning for Software Engineers” at the Ostschweizer Fachhochschule in Rapperswil. Over the past fifteen years, he has worked in multiple software industry engineering positions and applied research. He is passionate about Machine Learning and Software challenges “beyond CRUD”.