We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Writing Code for Science and Data (Keynote)

Formale Metadaten

Titel
Writing Code for Science and Data (Keynote)
Serientitel
Anzahl der Teile
9
Autor
Lizenz
CC-Namensnennung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
"Scientific research or data science need rapid experimentation and building intuitions from data. Yet, in academia or in the industry, the code must live on to be useful for future enquiries or in production. Always experimenting yet writing production-ready robust code may seem a conundrum. However it shares a lot with agile or extreme programming techniques. It is an interesting test bed of programming practices." "I will explore simple, and less simple, practices that I have encountered in my research for fast turn around and consolidation of code. I will discuss how these considerations led to the design of scikit-learn, that enables easy machine learning, yet is used in production. Finally, I will mention some scikit-learn gems, new or forgotten."