We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Deep Learning: A Bayesian Perspective

Formale Metadaten

Titel
Deep Learning: A Bayesian Perspective
Serientitel
Anzahl der Teile
16
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Deep learning is a form of machine learning for nonlinear high dimensional pattern matching and prediction. We present a Bayesian probabilistic perspective, and provide a number of insights, for example, more efficient algorithms for optimization and hyper-parameter tuning, and an explanation of finding good predictors. Traditional high-dimensional data reduction techniques, such as principal component analysis (PCA), partial least squares (PLS), reduced rank regression (RRR), projection pursuit regression (PPR) are all shown to be shallow learners. Their deep learning counterparts exploit multiple deep layers of data reduction which provide performance gains. We discuss stochastic gradient descent (SGD) training optimisation, and Dropout (DO) that provide estimation and variable selection, as well as Bayesian regularization, which is central to finding weights and connections in networks to optimize the bias-variance trade-off. To illustrate our methodology, we provide an analysis of spatio-temporal data. Finally, we conclude with directions for future research.