We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Paleoclimate constraints on the spatio-temporal character of past and future drought in climate models

Formale Metadaten

Titel
Paleoclimate constraints on the spatio-temporal character of past and future drought in climate models
Serientitel
Anzahl der Teile
16
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Drought is a spatio-temporal phenomenon; however, due to limitations of traditional statistical techniques it is often analyzed solely temporally—for instance, by taking the hydroclimate average over a spatial area to produce a timeseries. Herein, we use machine learning based Markov Random Field methods that identify drought in three-dimensional space-time. Critically, the joint space-time character of this technique allows both the temporal and spatial characteristics of drought to be analyzed. We apply these methods to climate model output from the Coupled Model Intercomparison Project phase 5 and tree-ring based reconstructions of hydroclimate over the full Northern Hemisphere for the past 1000 years. Analyzing reconstructed and simulated drought in this context provides a paleoclimate constraint on the spatio-temporal character of past and future droughts, with some surprising and important insights into future drought projections. Climate models, for instance, suggest large increases in the severity and length of future droughts but little change in their width (latitudinal and longitudinal extent). These models, however, exhibit biases in the mean width of drought over large parts of the Northern Hemisphere, which may undermine their usefulness for future projections. Despite these limitations, and in contrast to previous high-profile claims, there are no fundamental differences in the spatio-temporal character of simulated and reconstructed drought during the historical interval (1850-present), with critical implications for our confidence in future projections derived from climate models.