We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Optimum initialization of South Asian seasonal forecast using climatological relevant singular vectors

Formale Metadaten

Titel
Optimum initialization of South Asian seasonal forecast using climatological relevant singular vectors
Serientitel
Anzahl der Teile
13
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Designing an efficient seasonal forecasting system is ensuring that the uncertainty in the initial conditions is sampled optimally. Perturbation in the initial condition and the methodology used for sampling perturbation optimally plays a key role in the improvement of the current seasonal climate forecast. In this study the error growth properties of initial perturbation are investigated using climatically relevant singular vectors (CSVs). The Community Climate System Model version 4 (CCSM4) is used as a simulation tool to examine the growth of optimal perturbations with different lead times over the South Asian Monsoon region. It is found that reliable set of CSVs can be estimated by running an ensemble of model forecasts. Amplification of the optimal perturbations occurs for more than 1 month and possibly up to 6 months. The results show the growth rates of the singular vectors are very sensitive to the variable of perturbation, number of perturbations and the error norm. When the SV is used as an initial perturbation, the forecast skill of key atmospheric variables over South Asian Monsoon region is significantly improved. Further, it is demonstrated that the predictions with the singular vector have a more reliable ensemble spread, suggesting a potential merit for a probabilistic forecast. The promising results reported here should hopefully encourage further investigation of the methodology at different timescales.