We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Exploring stochastic and multi-scale modeling approaches for a seamless prediction system

Formale Metadaten

Titel
Exploring stochastic and multi-scale modeling approaches for a seamless prediction system
Serientitel
Anzahl der Teile
13
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Stochastic schemes to represent model uncertainty in the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble prediction system has helped improve its probabilistic forecast skill over the past decade by both improving its reliability and reducing the ensemble mean error. The largest uncertainties in the model arise from the model physics parameterizations. In the tropics, the parameterization of moist convection presents a major challenge for the accurate prediction of weather and climate. Super-parameterisation is a promising recent alternative strategy for including the effects of moist convection through explicit turbulent fluxes calculated from a cloud-resolving model (CRM) embedded within a global climate model (GCM). These two approaches (stochastic and super-parameterization) in convection parameterization have emerged as new paths forward and complement the conventional approaches rather than replace them. We study the impact of these two approaches and a combination of the two on forecasts from weather to sub-seasonal and climate timescales. Results from the evaluation of model forecast skill and fidelity in the Tropics and for organized convective systems such as the MJO will be presented. We show that the combination of the two approaches helps improve the reliability of forecasts of certain tropical phenomena, especially in regions that are affected by deep convective systems. This has implications for improving conventional convection parameterization using hybrid approaches for probabilistic earth system forecasting as we await the exascale computing systems of the future to resolve convective processes in climate models.