We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Principled Robust Machine Learning in New Geometries

Formale Metadaten

Titel
Principled Robust Machine Learning in New Geometries
Serientitel
Anzahl der Teile
23
Autor
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The principles of robust machine learning (ML) under the so-called distribution shift are far from clear. This shift can be a consequence of causal confounding, unfairness due to data biases, and adversarial attacks. In such cases, I will introduce a mathematically principled framework of robustification strategy: distributionally robust optimization (DRO). I will introduce the state-of-the-art tools of DRO for treating machine learning problems under distribution shift with new mathematical tools such as the Wasserstein metric and the kernel maximum mean discrepancy. I will demonstrate that those new geometries provide principled theory, state-of-the-art extensions, as well as practical computational algorithms for robust machine learning.