We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Geometric description of the spherical Spin-Glass Gibbs measures and temperature chaos

Formale Metadaten

Titel
Geometric description of the spherical Spin-Glass Gibbs measures and temperature chaos
Serientitel
Anzahl der Teile
5
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 2.0 Generic:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The Gibbs measure of many disordered systems at low temperature may exhibit a very strong dependance on even tiny variations of temperature, usually called “temperature chaos”. I will discuss this question for Spin Glasses. I will report on a recent work with Eliran Subag (Courant) and Ofer Zeitouni (Weizmann and Courant), where we give a detailed geometric description of the Gibbs measure at low temperature, which in particular implies temperature chaos for a general class of spherical Spin Glasses at low temperature. This question has a very long past in the physics literature, and an interesting recent history in mathematics. Indeed, in 2015, Eliran Subag has given a very sharp description of the Gibbs measure for pure p-spin spherical Spin Glasses at low temperature, building on results on the complexity of these spin glasses by Auffinger-Cerny and myself. This description (close to the so-called Thouless-Anderson-Palmer picture) excludes the existence of temperature chaos for the pure p-spin!! The recent work gives an extension of this very detailed geometric description of the Gibbs measure to the case of general mixed models, and shows that in fact the pure p-spin is very singular.