We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Adopting continuous-profiling: Understand how your code utilizes cpu/memory

Formale Metadaten

Titel
Adopting continuous-profiling: Understand how your code utilizes cpu/memory
Untertitel
Introduction into continuous-profiling and how it can help you writing more efficient code
Serientitel
Anzahl der Teile
542
Autor
Lizenz
CC-Namensnennung 2.0 Belgien:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
With the popularity of observability tooling to analyze Logs, Metrics and Traces, it has become easier than ever to find the bottleneck in your software stack. Once you have identified the particular system introducing a user facing performance degradation, as its developer you need to understand which part (ideally down to the function and line of code) is slowing it down. With that insight you are able to effectively optimize your application. In this talk I will show how profiles are collected, how they can be aggregated and visualized. And then how those insights can be used to optimize your code. While there is a focus on the Go ecosystem, most of the content of the talk should be transferable to other languages