We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Machine Learning Assisted Multiscale Simulation for Liquid Composite Molding

Formale Metadaten

Titel
Machine Learning Assisted Multiscale Simulation for Liquid Composite Molding
Serientitel
Anzahl der Teile
23
Autor
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Designing robust manufacturing processes and avoiding trial and error methods are key for economical implementation of fiber reinforced plastics. Usually, this is achieved using process simulation based on the finite element or finite volume method. However, when simulating the fluid flow through a fibrous structure the inherent complexity, more precisely the interaction of two different materials (fiber and polymer) as well as the influence of physical effects e.g. intermolecular forces that act at different spatial and temporal scales, lead to major challenges. Here, Machine Learning could help to provide computationally efficient simulations by e.g. data driven surrogate modelling, coupling ML with conventional flow solvers, Model Order Reduction or Physics Informed Neural Networks. The goal of the project "ML4ProcessSimulation - Machine Learning for Simulation Intelligence in Composite Process Design" is to explore the aforementioned methods in order to develop a multiscale simulation workflow that reduces the computational effort and accounts for relevant physical effects.