We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Iteratively re-weighted least squares for Sums of Convex Functions

Formale Metadaten

Titel
Iteratively re-weighted least squares for Sums of Convex Functions
Alternativer Titel
Iteratively re-weighted least squares and ADMM methods for solving affine inclusions
Serientitel
Anzahl der Teile
30
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We describe two matrix-free methods for solving large-scale affine inclusion problems on the product (or intersection) of convex sets. The first approach is a novel iterative re-weighting algorithm (IRWA) that iteratively minimizes quadratic models of relaxed subproblems while automatically updating a relaxation vector. The second approach is based on alternating direction augmented Lagrangian (ADAL) technology. The main computational costs of each algorithm are the repeated minimizations of convex quadratic functions which can be performed matrix-free. Both algorithms are globally convergent under loose assumptions, and each requires at most O(1/ε2) iterations to reach ε-optimality of the objective function. Numerical experiments show that both algorithms efficiently find inexact solutions. However, in certain cases, these experiments indicate that IRWA can be significantly more efficient than ADAL.