We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

A Unified Approach to Error Bounds for Structured Convex Optimization Problems

Formale Metadaten

Titel
A Unified Approach to Error Bounds for Structured Convex Optimization Problems
Serientitel
Anzahl der Teile
30
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
In this talk, we present a new framework for establishing error bounds for a class of structured convex optimization problems, in which the objective function is the sum of a smooth convex function and a general closed proper convex function. Such a class encapsulates fairly general constrained minimization problems, as well as various regularized loss minimization formulations in machine learning, signal processing, and statistics. Our framework not only allows us to recover a number of existing error bound results in a unified and transparent manner but also leads to new error bounds for problems whose objective functions do not necessarily have a polyhedral epigraph. As an illustration, we show that a class of nuclear-norm regularized loss minimization problems admits an error bound under a strict complementarity-type regularity condition. We then complement this result by constructing an example to show that the said error bound could fail to hold without the regularity condition. If time permits, we discuss the algorithmic implications of our results, particularly on the convergence rate analysis of a family of successive quadratic approximation methods for solving the aforementioned class of problems.