We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Smoothness-Increasing Accuracy-Conserving (SIAC) Filtering and Its Application

Formale Metadaten

Titel
Smoothness-Increasing Accuracy-Conserving (SIAC) Filtering and Its Application
Serientitel
Anzahl der Teile
16
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Since the introduction of Smoothness-Increasing Accuracy-Conserving (SIAC) Filtering for DG approximation of univariate hyperbolic equations by Cockburn et al., many generalizations of SIAC filtering have been proposed. Recently, new advancements in connecting the spline theory and SIAC filtering have paved the way for a more geometric view of this filtering technique. Based on which, various generalizations of the SIAC kernel have been proposed to make the filtering viable for more realistic applications. Examples include the introduction of SIAC line integral with applications for streamlining and flow visualization, hexagonal SIAC using nonseparable splines, and position dependent SIAC with nonuniform knot sequences. In this talk, I will introduce the basic concept of the SIAC filtering, its connection with well-established concepts from approximation theory, and discuss the recent advances in SIAC filtering.