We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Simulation of materials processing: towards design of new atomic and molecular layer deposition processes

Formale Metadaten

Titel
Simulation of materials processing: towards design of new atomic and molecular layer deposition processes
Serientitel
Anzahl der Teile
10
Autor
Lizenz
CC-Namensnennung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache
Produzent
Produktionsjahr2023
ProduktionsortFrankfurt am Main

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The continuing downscaling of semiconductor devices (More Moore) and the introduction of novel device architectures and materials (More-than-Moore) requires the deposition of a range of thin films of dielectrics, metals and semiconductors on complex 3D structures with high uniformity across a wafer and high conformality, e.g. in deep trenches. This is achieved using atomic layer deposition (ALD) which utilises two precursor molecules introduced sequentially to a reactor with a purge between each step. The key property of ALD films is their self-limiting chemistry in which once a precursor saturates the surface no further reaction takes place and a cycle deposits (a fraction of) a monolayer. Thickness is controlled by the number of cycles. Molecular Layer deposition (MLD) is a sister technique that uses organic molecules to produce hybrid organic-inorganic films or polymer films using the same self-limiting chemistry. In this presentation, I will describe our work on first principles modelling of ALD and MLD of a range of materials, namely Co metal, FeZe intermetallic and hybrid organic-inorganic materials showing how the simulations can help understand a process or predict a process chemistry. In addition, I will discuss how we envisage using outputs of these large simulations to develop kinetic Monte Carlo simulations and machine learning-enabled approaches to model ALD and MLD processes and predict new chemistries.
Schlagwörter