We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Fractional Schroedinger Equations and Biological Computation

Formale Metadaten

Titel
Fractional Schroedinger Equations and Biological Computation
Serientitel
Anzahl der Teile
10
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
In order to justify certain model equations proposed in the biophysics literature for charge transport on polymers like DNA and protein, we consider a general class of discrete nonlinear Schroedinger equations on lattices, and prove that in the continuum limit, the limiting dynamics are given by a nonlinear Schroedinger equation (NLS) with a fractional Laplacian. In particular, a range of fractional powers arise from long-range lattice interactions in this limit, whereas the usual NLS with the non-fractional Laplacian arises from short-range interactions. We also obtain equations of motion for the expected position and momentum, the fractional counterpart of the well-known Newtonian equations of motion for the standard Schroedinger equation, and use a numerical method to suggest that the nonlocal Laplacian introduces decoherence, but that effect can be mitigated by the nonlinearity. Joint work with Gigliola Staffilani, Enno Lenzmann, and Yanzhi Zhang. Time permitting, I will talk about recent work defining biophysical machines that out-perform Turing machines, in joint work with Onyema Osuagwu and Daniel Inafuku.