We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Almost sure scattering for the energy-critical nonlinear wave equation

Formale Metadaten

Titel
Almost sure scattering for the energy-critical nonlinear wave equation
Serientitel
Anzahl der Teile
10
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We discuss the defocusing energy-critical nonlinear wave equation in four dimensions. For deterministic and smooth initial data, solutions exist globally and scatter. In contrast, since deterministic and rough initial data can lead to norm inflation, the energy-critical NLW is ill-posed at low regularities. In this talk, we show that the global existence and scattering behavior persists under random and rough perturbations of the initial data. In particular, norm inflation only occurs for exceptional sets of rough initial data. As part of the argument, we discuss techniques from restriction theory, such as wave packet decompositions and Bourgain's bush argument.