We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Six-dimensional Theories, Topological Strings, and Modular Invariance

Formale Metadaten

Titel
Six-dimensional Theories, Topological Strings, and Modular Invariance
Serientitel
Anzahl der Teile
25
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
In the past six years, several efforts have been directed towards developing a dictionary in between the physics of six-dimesional theories and the algebraic geometry of elliptically-fibered Calabi-Yau three-folds, building upon methods in string theory. This has lead to novel results in enumerative geometry as well, in particular, the Gopakumar-Vafa invariants of the topological string of such Calabi-Yau varieties translate to an operator counting in the six-dimensional theory. This gives an unorthodox perspective on topological strings, unveiling novel modular properties and a connection to Weyl invariant Jacobi forms. This connection follows from six-dimensional physics and can be ultimately traced back to the BPS strings subsector of these models. In this talk we are going to discuss certain aspects and applications of this correspondence, as well as its interplay with recent results about universal features of the BPS strings.