We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

A proof of the model-independence of ∞-category theory

Formale Metadaten

Titel
A proof of the model-independence of ∞-category theory
Serientitel
Anzahl der Teile
13
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
In joint work with Dominic Verity we prove that four models of (∞,1)-categories — quasi-categories, complete Segal spaces, Segal categories, and 1-complicial sets — are equivalent for the purpose of developing ∞-category theory. To prove this we first introduce the notion of an ∞-cosmos, a category in which ∞-categories live as objects, an example of which is given by each of the four models mentioned above. We then explain how the category theory of ∞-categories can be developed inside any ∞-cosmos; eg, we define right adjoints and limits and prove that the former preserve the latter. We conclude by arguing that the four above mentioned ∞-cosmoi all biequivalent, the upshot being that ∞-categorical structures are preserved, reflected, and created by a number of “change-of-model” functors. More precisely, we show that each of these ∞-cosmoi have a biequivalent “calculus of modules,” modules between ∞-categories being a vehicle to express ∞-categorical universal properties.