We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Density properties of the stochastic heat equations with degenerate conditions

Formale Metadaten

Titel
Density properties of the stochastic heat equations with degenerate conditions
Serientitel
Anzahl der Teile
17
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
In this talk, we study the stochastic heat equation on R^d driven by a multiplicative Gaussian noise which is white in time and colored in space. The diffusion coefficient rho can be degenerate, which includes the parabolic Anderson model rho(u)= u as a special case. The initial data is rough in the sense that it can be any measure, including the Dirac delta measure, that satisfies some mild integrability conditions. Under these degenerate conditions, for any given t>0 and distinct m points x_1, ... x_m in R^d, we establish the existence, regularity, and strict positivity of the joint density of the random vector (u(t,x_1), ...u(t,x_m)). The talk is based on a recent jointwork with Yaozhong Hu and David Nualart for the spatial dimension case, and an ongoing research project with Jingyu Huang for the higher spatial dimension case.