We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Second order Lyapunov exponent for hyperbolic Anderson model

Formale Metadaten

Titel
Second order Lyapunov exponent for hyperbolic Anderson model
Serientitel
Anzahl der Teile
17
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
In this talk, we examine the connection between the hyperbolic and parabolic Anderson models in arbitrary space dimension d, with constant initial condition, driven by a Gaussian noise which is white in time. We consider two spatial covariance structures: (i) the Fourier transform of the spectral measure of the noise is a non-negative locally-integrable function; (ii) d = 1 and the noise is a fractional Brownian motion in space with index 1/4 < H < 1/2. In both cases, we show that there is striking similarity between the Laplace transforms of the second moment of the solutions to these two models. Building on this connection and the recent powerful results of Huang, Le and Nualart (2017) for the parabolic model, we compute the second order (upper) Lyapunov exponent for the hyperbolic model. In case (i), when the spatial covariance of the noise is given by the Riesz kernel, we present a unified method for calculating the second order Lyapunov exponents for the two models.