We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Heat kernels and functional inequalities on generalized diamond fractals

Formale Metadaten

Titel
Heat kernels and functional inequalities on generalized diamond fractals
Serientitel
Anzahl der Teile
17
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Generalized diamond fractals constitute a parametric family of spaces that arise as scaling limits of so-called diamond hierarchical lattices. The latter appear in the physics literature in the study of random polymers, Ising and Potts models among others. In the case of constant parameters, diamond fractals are self-similar sets. This property was exploited in earlier investigations by Hambly and Kumagai to study the corresponding diffusion process and its heat kernel. These questions are of interest in this setting in particular because the usual assumption of volume doubling is not satisfied. For general parameters, also the self-similarity is lost. Still, a diamond fractal can be regarded as an inverse limit of metric measure graphs and a canonical diffusion process obtained through a general procedure proposed by Barlow and Evans. This approach will allow us to provide a rather explicit expression of the associated heat kernel and deduce several of its properties. As an application, we will discuss some functional inequalities of interest.