We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Multi-objective Maximization of Monotone Submodular Functions with Cardinality Constraint

Formale Metadaten

Titel
Multi-objective Maximization of Monotone Submodular Functions with Cardinality Constraint
Serientitel
Anzahl der Teile
21
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We consider the problem of multi-objective maximization of monotone submodular functions subject to cardinality constraint, often formulated as max|A|=kmini∈{1,…,m}fi(A). While it is widely known that greedy methods work well for a single objective, the problem becomes much harder with multiple objectives. In fact, Krause et al.\ (2008) showed that when the number of objectives m grows as the cardinality k i.e., m=Ω(k), the problem is inapproximable (unless P=NP). We focus on the case where the number of objectives is super-constant yet much smaller than the cardinality of the chosen set. We propose the first constant factor algorithms for this regime, including one with the best achievable asymptotic guarantee and also a more practical nearly linear time algorithm. Experiments on synthetic data show that a heuristic based on our more practical and fast algorithm outperforms existing heuristics.