We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Data-Driven Chance Constrained Programs over Wasserstein Balls

Formale Metadaten

Titel
Data-Driven Chance Constrained Programs over Wasserstein Balls
Serientitel
Anzahl der Teile
21
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We provide an exact deterministic reformulation for data-driven chance constrained programs over Wasserstein balls. For individual chance constraints as well as joint chance constraints with right-hand side uncertainty, our reformulation amounts to a mixed-integer conic program. In the special case of a Wasserstein ball with the 1-norm or the ∞-norm, the cone is the nonnegative orthant, and the chance constrained program can be reformulated as a mixed-integer linear program. Using our reformulation, we show that two popular approximation schemes based on the conditional-value-at-risk and the Bonferroni inequality can perform poorly in practice and that these two schemes are generally incomparable with each other.