We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Analyzing Policies in Dynamic Robust Optimization

00:00

Formale Metadaten

Titel
Analyzing Policies in Dynamic Robust Optimization
Serientitel
Anzahl der Teile
21
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Determining optimal policies in dynamic robust optimization is often challenging due to the curse of dimensionality. As a result, many researchers have proposed restricting attention to classes of simpler decision rules (for instance, static or affine), which are computationally tractable and often deliver excellent performance. In this work, we propose a general theory for analyzing the effectiveness of policies in a large class of dynamic robust optimization problems. Through a transformation of the objective function, we provide a geometric characterization for the effectiveness of a policy class, which is helpful in either establishing the policy’s optimality or bounding its sub-optimality gap. Based on this geometric characterization, we recover and generalize several different results on static and affine polices from the literature. Furthermore, our theory establishes interesting connections with the theory of discrete convexity, global concave envelopes, and the integrality gap of mixed integer linear programs.