We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Online First-Order Framework for Robust Convex Optimization

Formale Metadaten

Titel
Online First-Order Framework for Robust Convex Optimization
Serientitel
Anzahl der Teile
21
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Robust optimization (RO) has emerged as one of the leading paradigms to efficiently model parameter uncertainty. The recent connections between RO and problems in statistics and machine learning domains demand for solving RO problems in ever more larger scale. However, the traditional approaches for solving RO formulations based on building and solving robust counterparts or the iterative approaches utilizing nominal feasibility oracles can be prohibitively expensive and thus significantly hinder the scalability of RO paradigm. We present a general and flexible iterative framework to solve robust convex optimization problems that is built on a fully online first-order paradigm. In contrast to the existing literature, a key distinguishing feature of our approach is that it requires access to only cheap first-order oracles for the original problem that are remarkably cheaper than pessimization or nominal feasibility oracles, while maintaining the same convergence rates. This, in particular, makes our approach much more scalable and hence preferable in large-scale applications. In the case of strongly convex functions, we also establish a new improved iteration complexity addressing an open question in the literature. Motivated by a robust portfolio optimization problem, we demonstrate the performance of our approach on robust quadratic programs with ellipsoidal uncertainty.